Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Public Health ; 24(1): 927, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556892

RESUMO

BACKGROUND: The escalating global prevalence of type 2 diabetes and prediabetes presents a major public health challenge. Physical activity plays a critical role in managing (pre)diabetes; however, adherence to physical activity recommendations remains low. The ENERGISED trial was designed to address these challenges by integrating mHealth tools into the routine practice of general practitioners, aiming for a significant, scalable impact in (pre)diabetes patient care through increased physical activity and reduced sedentary behaviour. METHODS: The mHealth intervention for the ENERGISED trial was developed according to the mHealth development and evaluation framework, which includes the active participation of (pre)diabetes patients. This iterative process encompasses four sequential phases: (a) conceptualisation to identify key aspects of the intervention; (b) formative research including two focus groups with (pre)diabetes patients (n = 14) to tailor the intervention to the needs and preferences of the target population; (c) pre-testing using think-aloud patient interviews (n = 7) to optimise the intervention components; and (d) piloting (n = 10) to refine the intervention to its final form. RESULTS: The final intervention comprises six types of text messages, each embodying different behaviour change techniques. Some of the messages, such as those providing interim reviews of the patients' weekly step goal or feedback on their weekly performance, are delivered at fixed times of the week. Others are triggered just in time by specific physical behaviour events as detected by the Fitbit activity tracker: for example, prompts to increase walking pace are triggered after 5 min of continuous walking; and prompts to interrupt sitting following 30 min of uninterrupted sitting. For patients without a smartphone or reliable internet connection, the intervention is adapted to ensure inclusivity. Patients receive on average three to six messages per week for 12 months. During the first six months, the text messaging is supplemented with monthly phone counselling to enable personalisation of the intervention, assistance with technical issues, and enhancement of adherence. CONCLUSIONS: The participatory development of the ENERGISED mHealth intervention, incorporating just-in-time prompts, has the potential to significantly enhance the capacity of general practitioners for personalised behavioural counselling on physical activity in (pre)diabetes patients, with implications for broader applications in primary care.


Assuntos
Telefone Celular , Diabetes Mellitus Tipo 2 , Medicina Geral , Estado Pré-Diabético , Telemedicina , Humanos , Diabetes Mellitus Tipo 2/prevenção & controle , Diabetes Mellitus Tipo 2/epidemiologia , Estado Pré-Diabético/terapia , Comportamento Sedentário , Exercício Físico , Telemedicina/métodos
2.
BMC Public Health ; 23(1): 613, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36997936

RESUMO

BACKGROUND: The growing number of patients with type 2 diabetes and prediabetes is a major public health concern. Physical activity is a cornerstone of diabetes management and may prevent its onset in prediabetes patients. Despite this, many patients with (pre)diabetes remain physically inactive. Primary care physicians are well-situated to deliver interventions to increase their patients' physical activity levels. However, effective and sustainable physical activity interventions for (pre)diabetes patients that can be translated into routine primary care are lacking. METHODS: We describe the rationale and protocol for a 12-month pragmatic, multicentre, randomised, controlled trial assessing the effectiveness of an mHealth intervention delivered in general practice to increase physical activity and reduce sedentary behaviour of patients with prediabetes and type 2 diabetes (ENERGISED). Twenty-one general practices will recruit 340 patients with (pre)diabetes during routine health check-ups. Patients allocated to the active control arm will receive a Fitbit activity tracker to self-monitor their daily steps and try to achieve the recommended step goal. Patients allocated to the intervention arm will additionally receive the mHealth intervention, including the delivery of several text messages per week, with some of them delivered just in time, based on data continuously collected by the Fitbit tracker. The trial consists of two phases, each lasting six months: the lead-in phase, when the mHealth intervention will be supported with human phone counselling, and the maintenance phase, when the intervention will be fully automated. The primary outcome, average ambulatory activity (steps/day) measured by a wrist-worn accelerometer, will be assessed at the end of the maintenance phase at 12 months. DISCUSSION: The trial has several strengths, such as the choice of active control to isolate the net effect of the intervention beyond simple self-monitoring with an activity tracker, broad eligibility criteria allowing for the inclusion of patients without a smartphone, procedures to minimise selection bias, and involvement of a relatively large number of general practices. These design choices contribute to the trial's pragmatic character and ensure that the intervention, if effective, can be translated into routine primary care practice, allowing important public health benefits. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05351359, 28/04/2022).


Assuntos
Diabetes Mellitus Tipo 2 , Medicina Geral , Estado Pré-Diabético , Telemedicina , Humanos , Diabetes Mellitus Tipo 2/prevenção & controle , Exercício Físico , Estudos Multicêntricos como Assunto , Estado Pré-Diabético/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Comportamento Sedentário , Ensaios Clínicos Pragmáticos como Assunto
3.
Phys Chem Chem Phys ; 21(46): 25700-25706, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31720599

RESUMO

The efficient manipulation of the optoelectronic properties of layered semiconductors is essential for future applications of these unique materials. Here, we demonstrate that single-layer, large-area graphene can serve as a conductive spacer between an electrolyte solution and single-layer MoS2. In situ Raman and photoluminescence (PL) spectroscopies were employed to monitor the charge transfer from graphene to MoS2. The Raman G and 2D bands were used to quantify the carrier concentration in graphene. The high efficiency of the charge transfer via graphene in a broad carrier concentration range of ±2.1 × 1013 cm-2 was documented by the extreme sensitivity of the MoS2 Raman mode to the electron-doping (shift rate of ∼2.5 cm-1/1 × 1013 cm-2 electron concentration) and the high sensitivity of the PL yield, which drops by more than one and two orders of magnitude in the hole and electron doping regimes, respectively. The easy implementation, and the lithography-free effectiveness of the setup, in terms of the achievable carrier concentration range and the charge-transfer efficiency, could be an asset in near-future research and in the development of optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...